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Abstract
Van Hove’s theory of singularities tells us that for three-dimensional lattices the phonon
frequency distribution function has square-root singularities and hence is continuous. Using this
fact and Weierstrass’s theorem, we extend Debye’s theory of specific heats of three-dimensional
solids to arbitrary phonon frequency spectra. It is found that in the low-temperature limit both
the specific heat and thermal expansion coefficient exhibit the T 3 law and the Grüneisen’s law is
valid. In the high-temperature limit, the thermal expansion coefficient approaches a
volume-dependent constant and Grüneisen’s law is valid. At intermediate temperatures
Grüneisen’s law is invalid.

1. Introduction

The evaluation of the vibrational specific heat of a solid is
an old problem dating back to Einstein [1] and Debye [2].
The specific heat of the lattice of a solid can be obtained if
the phonon frequency distribution function g(ω) is known.
Here g(ω) is defined such that g(ω)dω is the fractional
number of frequencies in the range between ω and ω + dω.
Theoretically, g(ω) can be obtained by use of the Born–
Karman method [3]. Unfortunately, the evaluations of g(ω) are
in general very complicated [4–9]. The analytical expressions
for g(ω) are available only for one-dimensional (1D) [3]
and two-dimensional (2D) lattices [7]. Experimentally g(ω)
can be obtained by use of x-ray [10, 11] and neutron [12]
scattering methods. Since it is widely believed that phonons
play a significant role in the mechanism of high-temperature
superconductivity [13], researchers’ interest in phonons has
revived.

Since experimentally it is easier to obtain the specific
heat than to obtain g(ω), researchers tried to obtain g(ω)
inversely by use of the experimental data of the specific heat.
Using the Fourier transform, Montroll [4] and independently
Lifshitz [14] obtained an exact solution of the inverse problem.
Using the Möbius inverse formula, Chen [15, 16] also obtained
an exact solution of the inverse problem. Although the
exact solution is available, it is in practice still difficult
to obtain g(ω) [17, 18]. In this paper, we will apply
Weierstrass’s theorem to this problem and further develop
Debye’s theory.

2. Low-temperature limit

The specific heat can be expressed as

CV (T ) = kB

∫ ωm

0

(h̄ω/kBT )2eh̄ω/kB T

(eh̄ω/kB T − 1)2
g(ω)dω, (1)

where T is the temperature, ωm is the maximum possible
frequency, h̄ is Planck’s constant and kB is Boltzmann’s
constant. g(ω) satisfies the normalization condition∫ ωm

0
g(ω)dω = 3r N, (2)

where N is the number of unit cells in the lattice, r is the
number of atoms per unit cell.

Let us write g(ω) = ga(ω)+go(ω). Here ga(ω) and go(ω)

are the contributions of three acoustic modes and 3r −3 optical
modes to the frequency spectrum, respectively. For smallω, we
may expand for acoustic mode σ ,

ω(σ, �k) = ω(σ, k, θ, φ)

= u(σ, θ, φ)k

[
1 +

∞∑
i=1

τ2i (σ, θ, φ)k
2i

]
, (3)

where �k = (k, θ, φ) is the wavevector and u(σ, θ, φ) and
τ2i(σ, θ, φ) are determined by the second derivative of the
potential of the crystal with respect to atomic displacements
evaluated at equilibrium positions.

From equation (3), we can calculate ga(ω). ga(ω) can be
expanded as a power series in ω2,

g(ω) = ga(ω) =
∞∑
j=1

b2 jω
2 j , ω � ωm, (4)
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where b2 j are determined by u(σ, θ, φ), τ2(σ, θ, φ), . . . ,

τ2 j(σ, θ, φ), σ = 1, 2, 3. For example, b2 and b4 are given
by

b2 = V

8π3

3∑
σ=1

∫ 2π

0
dφ

∫ π

0
dθ

sin θ

[u(σ, θ, φ)]3
≡ 3V

2π2ū3
, (5)

b4 = − 5V

8π3

3∑
σ=1

∫ 2π

0
dφ

∫ π

0
dθ sin θ

τ2(σ, θ, φ)

[u(σ, θ, φ)]5
. (6)

Let us show that Van Hove’s singularities cannot invalidate
the low-frequency expansion equation (4). Van Hove’s
singularities are caused by the existence of the critical points
satisfying ∂ω/∂�k = 0 in the �k-space [19]. In the low-frequency
regime, the first-order term of equation (3) is much larger than
the higher-order terms and so we have ∂ω/∂�k �= 0. Hence
no Van Hove’s singularities occurs and the low-frequency
expansion is valid.

In the low-temperature limit, only the low-frequency
phonons are excited and equation (4) becomes useful. This
gives [24]

CV (T ) = 9r NkB

(
T

TD

)3 ∞∑
j=1

b2 jω
2 j−2
m

b2

× (2 j + 2)!ζ(2 j + 2)

(
T

Tm

)2 j−2

, T � Tm, (7)

where ζ(x) = ∑∞
n=1 n−x is the usual Riemann zeta function.

3. Extension

Let us extend the above low-frequency expansion equation (4)
to the whole range of frequency. Van Hove’s theory
of singularities [19–21] tells us that for three-dimensional
(3D) lattices g(ω) has square-root singularities and hence is
continuous for 0 � ω � ωm. g(ω) shows the Debye
acoustic spectrum for small frequencies, displays a few finite
maxima for intermediate frequencies and approaches zero at
the maximum frequency. We have

g(ω = 0) = g(ω = ωm) = 0. (8)

Van Hove’s results agree with numerical and experimental
results of g(ω) [22, 23].

Since g(ω) has square-root singularities, we cannot
expand it by use of the Fourier series and the Legendre
polynomials. Let us make use of Weierstrass’s theorem [25],
which states that if f (x) is continuous on the closed interval
[a, b], there exists a sequence of polynomials Pn(x) such that

lim
n→∞ Pn(x) = f (x), (9)

where

Pn(x) =
n∑

j=0

anj x
j . (10)

This theorem tells us that there exists a set of coefficients
anj , n = 0, . . . ,∞, j = 0, . . . , n such that

∑n
j=0 anj x j tends

uniformly to f (x) as n → ∞.

Make a transformation

x ∈ [a, b] → y = x − a

b − a
∈ [0, 1],

f (x) → F(y) = f (x)− f (a)

f (b)− f (a)
− x − a

b − a
,

(11)

such that F(y) is continuous on the closed interval [0, 1],
with F(0) = F(1) = 0. Using Bernstein’s polynomials
Bn(F, y) [25], we obtain

F(y) = lim
n→∞Bn(F, y), (12)

where

Bn(F, y) ≡
n∑

i=1

[
Ci

n F

(
i

n

) ]
yi(1 − y)n−i

=
n∑

i=1

Ci
n F

(
i

n

) n−i∑
j=0

(−1)n−i− j C j
n−i yn− j

=
n∑

j=1

Anj y j , (13)

with

Anj =
j∑

i=1

(−1) j−i Cn− j
n−i Ci

n F

(
i

n

)
. (14)

Since g(ω) is an even function of ω, we may define the
dimensionless phonon frequency distribution function as

G(ω2/ω2
m) = g(ω)

b2ω2
m

. (15)

We find that G(y) is continuous on the closed interval
[0, 1], with G(0) = G(1) = 0 and G(y) = y for y � 1.
Making use of Bernstein’s polynomials, we obtain

g(ω)

b2ω2
m

= G(ω2/ω2
m) = lim

n→∞Bn

(
G,

ω2

ω2
m

)

= lim
n→∞

n∑
j=1


n j

(
ω2

ω2
m

) j

, 0 � ω � ωm, (16)

where


n j =
j∑

i=1

(−1) j−iCn− j
n−i Ci

n G

(
i

n

)

=
j∑

i=1

(−1) j−i Cn− j
n−i Ci

n

g
(√

i
nωm

)

b2ω2
m

. (17)

Equation (16) is an extension of equation (4).
Substitution of equation (16) into (2) gives

ωD

ωm
=

[
lim

n→∞

n∑
j=1

3
n j

1 + 2 j

]1/3

, (18)

where ωD = (9r N/b2)
1/3 is the usual Debye cut-off frequency.

Making use of equation (16), we obtain the canonical
partition function Z , the internal energy E and the specific heat

2
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CV as

ln Z = − E0

kBT
+ 9r N lim

n→∞

n∑
j=1


n j∑n
l=1 3
nl/(1 + 2l)

×
[
(2 j)!ζ(2 j + 2)

(
T

Tm

)2 j+1

−
2 j∑

i=0

i !Ci
2 j

(
T

Tm

)i+1

Wi+2(e
−Tm/T )

]
, (19)

E = E0 + 9r NkBT lim
n→∞

n∑
j=1


n j∑n
l=1 3
nl/(1 + 2l)

×
[
(2 j + 1)!ζ(2 j + 2)

(
T

Tm

)2 j+1

−
2 j+1∑
i=0

i !Ci
2 j+1

(
T

Tm

)i

Wi+1(e
−Tm/T )

]
, (20)

CV (T ) = 9r NkB lim
n→∞

n∑
j=1


n j∑n
l=1 3
nl/(1 + 2l)

×
[
(2 j + 2)!ζ(2 j + 2)

(
T

Tm

)2 j+1

− (2 j + 2)!
(

T

Tm

)2 j+1

W2 j+2(e
−Tm/T )

−
(

T

Tm

)−1

W0(e
−Tm/T )

−
2 j∑

i=0

(i + 1)!(Ci
2 j+1 + Ci+1

2 j+1)

(
T

Tm

)i

Wi+1(e
−Tm/T )

]
,

(21)

where E0 = E(T = 0), Tm = h̄ωm/kB, TD = h̄ωD/kB is
the usual Debye temperature and the Bose–Einstein function
Wδ(x) is defined as

Wδ(x) =
∞∑

i=1

x i

i δ
, 0 < x < 1, (22)

with ζ(δ) = Wδ(1).
As is well known, the thermodynamic functions of a

3D ideal Bose gas are expressible in terms of Bose–Einstein
functions,

P = 2E

3V
= kBT

λ3
W5/2(e

μ/kB T ),

N/V = 1

λ3
W3/2(e

μ/kB T ),

(23)

where λ = h/
√

2πmkBT is the usual thermal wavelength and
μ is the chemical potential. It is interesting to notice that the
thermodynamic functions of 3D solids involve Bose–Einstein
functions.

In the low-temperature limit, equation (21) reduces to

CV = 9r NkB

(
T

TD

)3

× lim
n→∞

n∑
j=1


n j(2 j + 2)!ζ(2 j + 2)

(
T

Tm

)2 j−2

,

T � Tm. (24)

Comparing equation (24) with (7), we obtain

lim
n→∞
n j = b2 jω

2 j−2
m

b2
. (25)

Equation (25) is only valid for sufficiently small j . The reason
is that for sufficiently small j only acoustic modes make a
contribution to 
n j . For sufficiently large j , both acoustic and
optical modes make a contribution to 
n j .

At high temperatures, let us use the expansion

x

ex − 1
= 1 − 1

2
x −

∞∑
i=1

(−1)i
Bi

(2i)!x2i , (26)

where Bi are Bernoulli’s numbers, with B1 = 1/6, B2 =
1/30, B3 = 1/42, B4 = 1/30, B5 = 5/66, . . .. We obtain
for T 
 Tm

ln Z = − E0

kBT
+ 3r N

{
ln(T/Tm)

+ lim
n→∞

[∑n
j=1
n j/(2 j + 1)2∑n
j=1 
n j/(2 j + 1)

+ 3
Tm

T

n∑
j=1


n j

2(2 j + 2)

+
∞∑

i=1

(−1)i Bi

(2i)!(2i)

(
Tm

T

)2i n∑
j=1


n j

2i + 2 j + 1

]}
, (27)

E = E0 + 3r NkBT

{
1 − 3 lim

n→∞

[
Tm

T

n∑
j=1


n j

2(2 j + 2)

−
∞∑

i=1

(−1)i Bi

(2i)!
(

Tm

T

)2i n∑
j=1


n j

2i + 2 j + 1

]}
, (28)

CV = 3r NkB

{
1 + 3

∞∑
i=1

(−1)i(2i − 1)Bi

(2i)!
(

Tm

T

)2i

×
[

lim
n→∞

n∑
j=1


n j

2i + 2 j + 1

]}
. (29)

4. Thermal expansion coefficient

Making use of equations (19) and (20), we obtain the pressure
P , the compression coefficient K and the thermal expansion
coefficient α = (1/V )(∂V/∂T )P as

P = kBT
∂ ln Z

∂V
= −dE0

dV
− ∂ lnωm

∂V
(E − E0)

+ 9r NkBT lim
n→∞

n∑
j=1

[
∂

∂V


n j∑n
l=1 3
nl/(2l + 1)

]

×
[
(2 j)!ζ(2 j + 2)

(
T

Tm

)2 j+1

−
2 j∑

i=0

i !Ci
2 j

(
T

Tm

)i+1

Wi+2(e
−Tm/T )

]
, (30)

K = −V

(
∂P

∂V

)
T

∼= V
d2 E0

dV 2
≡ K0, (31)

αK =
(
∂P

∂T

)
V

= −∂ lnωm

∂V
CV

3
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+ 9r NkB lim
n→∞

∞∑
j=1

[
∂

∂V


n j∑n
l=1 3
nl/(2l + 1)

]

×
[
(2 j)!(2 j + 2)ζ(2 j + 2)

(
T

Tm

)2 j+1

−
2 j∑

i=0

i !(i + 2)Ci
2 j

(
T

Tm

)i+1

Wi+2(e
−Tm/T )

−
2 j∑

i=0

i !Ci
2 j

(
T

Tm

)i

Wi+1(e
−Tm/T )

]
. (32)

Grüneisen’s law states that the ratio α/CV is independent of
temperature. We see that Grüneisen’s law is invalid at finite
temperatures.

In the low-temperature limit, both CV and α exhibit the T 3

law and Grüneisen’s law is valid,

CV = 216ζ(4)r NkB

(
T

TD

)3

, T � Tm, (33)

α

CV
= − 1

K0

∂ lnωD

∂V
= 1

3K0

∂ ln b2

∂V
, T � Tm. (34)

At high temperatures, we obtain by use of equations (27)–
(29)

P = kBT
∂ ln Z

∂V
= −dE0

dV
− ∂ lnωm

∂V
(E − E0)

+ 3r NkBT lim
n→∞

[
∂

∂V

∑n
j=1
n j/(2 j + 1)2∑n
j=1 
n j/(2 j + 1)

+ 3
Tm

T

n∑
j=1

1

2(2 j + 2)

∂
n j

∂V

+
∞∑

i=1

(−1)i Bi

(2i)!(2i)

(
Tm

T

)2i n∑
j=1

1

2i + 2 j + 1

∂
n j

∂V

]
, (35)

K = −V

(
∂P

∂V

)
T

∼= V
d2 E0

dV 2
≡ K0, (36)

αK =
(
∂P

∂T

)
V

= −∂ lnωm

∂V
CV

+ 3r NkB lim
n→∞

∂

∂V

∑n
j=1 
n j/(2 j + 1)2∑n
j=1
n j/(2 j + 1)

− 3r NkB lim
n→∞

∞∑
i=1

(−1)i(2i − 1)Bi

(2i)!(2i)

×
(

Tm

T

)2i n∑
j=1

1

2i + 2 j + 1

∂
n j

∂V
. (37)

In the high-temperature limit, α approaches a volume-
dependent constant and Grüneisen’s law is valid,

αK0

CV
= αK0

3r NkB
= −∂ lnωm

∂V

+ lim
n→∞

∂

∂V

∑n
j=1
n j/(2 j + 1)2∑n
j=1 
n j/(2 j + 1)

, T 
 Tm. (38)

5. The corresponding law

Retaining the lowest-order term in equation (16), equation (21)
reduces to the Debye result,

CV = 3r NkB3

[
24ζ(4)

(
T

TD

)3

−
(

T

TD

)−1

W0(e
−TD/T )

− 4W1(e
−TD/T )− 12

(
T

TD

)
W2(e

−TD/T )

− 24

(
T

TD

)2

W3(e
−TD/T )− 24

(
T

TD

)3

W4(e
−TD/T )

]

≡ 3r NkBφ(T/TD). (39)

Here φ(T/TD) is a universal function of T/TD. The specific
heats of solids are the same if the solids are in corresponding
states, i.e. have the same values of T/TD (the corresponding
law).

For the general phonon frequency spectrum, equation (21)
may be written as

CV = 3r NkBψ({
n j }, T/Tm). (40)

Here ψ({
n j }, T/Tm) is not a universal function of T/Tm and
the corresponding law is in general invalid. Nevertheless, the
specific heats of two solids are the same at the same values
of T/Tm if their respective dimensionless phonon frequency
distribution functions g(ω)/b2ω

2
m = G(ω2/ω2

m) are the same
function of ω2/ω2

m.

6. Possible application

Let us discuss possible application of our results.
(1) The experimental data of g(ω) can be obtained by use

of x-ray [10, 11] and neutron [12] scattering methods. Since
the experimental data are discrete, a fitting function must be
used. The Van Hove’s theory of singularities and Weierstrass’s
theorem guarantee that we should use a polynomial Pn(ω

2) =∑n
j=1 anjω

2 j to fit g(ω). The more experimental data we use,
the more accurate g(ω) we obtain.

Particularly, if g(
√

i/nωm) (i = 1, 2, . . . , n − 1) are
obtained experimentally, g(ω) can be obtained approximately
by use of the approximate formula

g(ω) ≈
n∑

j=1

[ j∑
i=1

(−1) j−i Cn− j
n−i Ci

n g

(√
i

n
ωm

)](
ω2

ω2
m

) j

.

(41)
The obtained g(ω) will become more and more accurate as n
becomes larger and larger. As n → ∞, the obtained g(ω)
approaches the actual phonon spectrum.

(2) The discrete data of the specific heat can be obtained
experimentally. The Van Hove’s theory of singularities and
Weierstrass’s theorem guarantee that the fitting function of
g(ω) should be a polynomial Pn(ω

2) = ∑n
j=1 anjω

2 j , which
implies that the fitting function of CV should be

CV (T ) ≈ 9r NkB

n∑
j=1

anjω
2 j
m∑n

l=1 3anlω2l
m/(1 + 2l)

× (T/Tm)
2 j+1

∫ Tm/T

0

x2 j+2ex

(ex − 1)2
dx . (42)

4
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Using this function to fit the experimental data of CV , the
coefficients anj can be obtained. Hence g(ω) can be obtained
approximately.

7. Conclusion

Van Hove’s theory of singularities tells us that for 3D lattices
the phonon frequency distribution function g(ω) has square-
root singularities and is continuous for 0 � ω � ωm. Using
this fact and Weierstrass’s theorem as well as Bernstein’s
polynomials, we extend Debye’s theory of specific heats of 3D
solids to arbitrary frequency spectra. We obtain the analytical
expressions of the thermodynamic functions involving Bose–
Einstein functions. For the general phonon frequency spectra,
the corresponding law is in general invalid. Nevertheless,
the specific heats of two solids are the same at the same
values of T/Tm if their respective dimensionless frequency
distributions function g(ω)/b2ω

2
m = G(ω2/ω2

m) are the same
function of ω2/ω2

m. In the low-temperature limit, both specific
heat and thermal expansion coefficient exhibit the T 3 law and
Grüneisen’s law is valid. In the high-temperature limit, the
thermal expansion coefficient approaches a volume-dependent
constant and Grüneisen’s law is valid. At intermediate
temperatures Grüneisen’s law is invalid.

Finally, we should point out that the theory presented in
this paper is invalid for 1D and 2D lattices. The reason is
that for 1D lattices g(ω) have inverse square-root singularities
and for 2D lattices g(ω) have logarithmic singularities; g(ω)
diverge at these singularities.
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